Multi-focus Image Fusion Based on Sparse Features
نویسندگان
چکیده
منابع مشابه
Multi-focus Image Fusion Based on Sparse Features
In order to effectively extract the focused regions from the source images and inhibit the blocking artifacts of the fused image, a novel adaptive block-based image fusion scheme based on sparse features is proposed. The source images are decomposed into principal and sparse matrices by a newly developed robust principal component analysis (RPCA) decomposition. The problem of multi-focus image ...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملMulti Focus Image Fusion Using Joint Sparse Representation
The main objective is to bring up a highly informative image as result using image fusion. In this paper, A unique method for image fusion using sparse representation is used. The sparse coefficients are used as image features. The source image could be identified with common features and innovative features. The use of sparse representation for the extraction of common and innovative features,...
متن کاملFPGA-Based Multi-Focus Image Fusion Techniques
Image fusion is a process which combines the data from two or more source images from the same scene to generate one single image containing more precise details of the scene than any of the source images. Among many image fusion methods like averaging, principle component analysis and various types of Pyramid Transforms, Discrete cosine transform, Discrete Wavelet Transform special frequency a...
متن کاملMulti-focus image fusion based on sparse decomposition and background detection
In order to effectively improve fusion quality, a novel multi-focus image fusion approach with sparse decomposition is proposed. The source images are decomposed into principal and sparse components by robust principal component analysis (RPCA) decomposition. A sliding window technique is applied to inhibiting blocking artifacts. The focused pixels of the source images are detected by using the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Signal Processing, Image Processing and Pattern Recognition
سال: 2014
ISSN: 2005-4254
DOI: 10.14257/ijsip.2014.7.2.37